Differentiate x^5 + 3x^2 - 17 with respect to x

When you are differentiating, use the formula:

The differential of ax^n is (n*a) x^(n-1). Or in words: 'multiply by the power, then reduce the power by 1.'

Hence for our question, x^5 differentiates to 5x^(5-1) = 5x^4; 3x^2 differentiates to (2*3)x^(2-1) = 6x.

-17 is eliminated because it is the same as -17x^0, so when you multiply -17 by the power, 0, -17 * 0 = 0.

The final answer is:

dy/dx = 5x^4 + 6x

DL
Answered by David L. Maths tutor

3786 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve equations with modulus functions on both sides?


Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.


What is the difference between definite and indefinite integrals?


A curve is defined by the parametric equations; x=(t-1)^3, y=3t-8/(t^2), t~=0. Find dy/dx in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences