Show that sin2A is equal to 2sinAcosA

This question requires you to use the trigonometric identity sin(A+B)=sinAcosB + sinBcosA. The difficulty in this problem is noticing that you need to substitute 2A for A+A and then you can simply put this into the trig identity. Doing this leads to you sin2A=sinAcosA + sinAcosA which is 2sinAcosA.

SL
Answered by Samuel L. Maths tutor

34333 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(x-1)^4 with respect to x.


Integrate sin^2(x) with respect to x


x is an angle, if 180 > x > 90 and sinx = √2 / 4 what is the value of angle x


Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning