A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x

  1. y = cos2θ . 2) cos2θ = 1 - 2sin²θ. 3) x = 2sinθ. 4) x² = 4sin²θ. 5) (1/2)x² = 2sin²θ. 6) y = 1 - (1/2)x².
NB
Answered by Nick B. Maths tutor

16737 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you intergrate basic algebra?


Integrate (12x^5 - 8x^3 + 3)dx giving the terms of the answer in the simplest terms


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


Differentiate with respect to x: y=(6x^2-1)/2sqrt(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning