A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x

  1. y = cos2θ . 2) cos2θ = 1 - 2sin²θ. 3) x = 2sinθ. 4) x² = 4sin²θ. 5) (1/2)x² = 2sin²θ. 6) y = 1 - (1/2)x².
NB
Answered by Nick B. Maths tutor

16615 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


Why does the chain rule work?


A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


Let f(x) = 5x^4 + 6x^3 + 3, find dy/dx at x = 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning