Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1

Find the value of dx by dividing the difference between the integral boundaries by the number of ordinates minus 1. Therefore dx=(1-0)/4=1/4. Then define your ordinates, by 5 values between 0 and 1, where the difference between them is 1/4. The ordinates for this example will therefore be 0, 0.25, 0.5, 0.75 and 1. Then use simpson's equation: (dx/3)(f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)) by substituting your ordinate values into the original equation e^(x^2). If you typed everything into your calculator correctly, you should yield the answer 1.4637.

JF
Answered by Joshua F. Maths tutor

5954 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.


Integrate xsin(2x) by dx between the limits 0 and pi/2.


Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


When do you use Mode, Mean and Median


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences