A Car of mass 1000kg applies a constant 200N breaking force over a distance of 30m and comes to a complete stop. How fast was the car going the instant the brakes were engaged.

Before we start we should have some idea of the route of our solution. We should observe that force, distance and work have a relation and that mass, velocity and work have a relation. So we should calculate the work done by the brakes stopping the car. W=FD so W = 20030=6000J We know work = change in energy and that the final energy is 0. So we now know that the starting energy of the car KE = 6000J We now look to the kinetic energy equation that states KE = 1/2 * m * v^2 solving for v we have v=sqrt(2KE/m) we now just plug in v = sqrt(26000/1000) = sqrt(12) = 3.46 ms^-1

Answered by Sean O. Physics tutor

2456 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Why do windows around the house steam up?


What is the difference between voltage and current?


What is the momentum of a 84 kg man running at 5 m/s?


The charge that flows through the shower in 300 seconds is 18000C. The electric shower has a power of 13.8 kW. Calculate the resistance of the heating element in the shower.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy