Find the derivative of the curve e^(xy) = sin(y)

First we have to identify that implicit differentiation is used to solve this question. We can differentiate the first the LHS first, by using the chain rule, we know that the differentiation of e^(xy) is e^(xy) times the differentiation of (xy). This becomes (y + xy') by using implicit differentiation. Sin(y) differentiates into y'cos(y). Rearranging the equation to get y' as the subject gives you (ye^(xy))/((cos(y)+xe^(xy))

GG
Answered by Gouri G. Maths tutor

8006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


Consider the unit hyperbola, whose equation is given by x^2 - y^2 = 1. We denote the origin, (0, 0) by O. Choose any point P on the curve, and label its reflection in the x axis P'. Show that the line OP and the tangent line to P' meet at a right angle.


How do you solve a Differential equation using integrating factors?


Differentiate The Following function


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning