Top answers

All subjects
A Level

Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.

The initial quadratic can be either positive or negative so we must solve for both possibilities.

Solving for positive:

3x^2 - 19x + 20 < 2x + 2    =    3x^2 - 21x + 18 < 0

...
JM
11327 Views

"He is far gone:" do you think Hamlet is mad any point during the play?

When Hamlet says that he will "put an antic disposition on" (Act 1, Scene V, 189), he positions himself as being a sane man playing the part of an insane man in order to confuse and deceive his ...

CJ
13151 Views

The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?

Note: time, t, is measured in minutes, and height, h, is measured in metres.

Let k>0, a constant. 

The differential equation to be solved is given by: dh/dt = - k(h)^0.5.

Us...

SN
Answered by Sandie N. Maths tutor
5426 Views

curve C with parametric equations x = 4 tan(t), y=5*3^(1/2)*sin(2t). Point P lies on C with coordinates (4*3^(1/2), 15/2). Find the exact value of dy/dx at the point P.

dy/dx = dy/dt *dt/dx (chain rule).

x=4tan(t) hence dx/dt = 4 sec2(t)

y = 531/2sin(2t) hence y'= 1031/2 cos(2t)

therefore dy/dx = 103...

HP
Answered by Harry P. Maths tutor
8098 Views

z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.

a) Need to multiply with conjugate to bring z to form a+ib. => z= z * (1-i)/(1-i) = (4-4i) / 2 = 2-2i

b) z^2 = (2-2i)^2 = 4-8i+4 i^2 = 4-8i-4 = 8i

since z is root of x^2+px+q=0 then z* (c...

HP
6801 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning