Top answers

Maths
A Level

The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/d...

HH
Answered by Henry H. Maths tutor
11873 Views

The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.

Note here: u_n indicates u subscript n.

(a) u_1 = 48 and the ratio, r = 0.6

Using a calculator, u_2 = 48 x 0.6 = 28.8

u_3 = 28.8 x 0.6 = 17.28

(b...

FS
Answered by Felix S. Maths tutor
12748 Views

Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2

8x3-12x2-2x+D...(1)

2x+1...(2)

Assume 2x+1=0 so x=-1/2

8x3-12x2-2x+D=-2... when divided by (2)

substi...

SW
Answered by Shaun W. Maths tutor
4302 Views

How would you differentiate ln(sin(3x))?

To answer this question we require the chain rule, which states that dy/dx=(dy/du)*(du/dx)

To use this formula in our question, we can let y=ln(sin(3x))=ln(u) where u=sin(3x)

<...

HD
Answered by Hannah D. Maths tutor
11947 Views

Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)

First, write the line in vector form r=(1 1 1) + t(1 2 -1). Consider a point P on the line such that the line connecting P and A is perpendicular to L. The vector P->A is (2 3 4) - (1 1 1) - ...

ZT
Answered by Zac T. Maths tutor
6207 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning