Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0

A quadratic equation has two equal roots when its discriminant is equal to 0. Calculating the discriminant of the given equation: D = k2 - 4(k-1)(2k-3) = k2 - 8k2+20k-12 = -7k2+20k-12=0 Solving this equation for k: 7k2-20k+12=0 D = 100-84 = 16 k1,2=(10+-4)/7 => k = 6/7, k=2

KP
Answered by Katerina P. Maths tutor

4466 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the different steps involved in Proof by Induction?


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


How do you differentiate 2 to the power x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning