Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0

A quadratic equation has two equal roots when its discriminant is equal to 0. Calculating the discriminant of the given equation: D = k2 - 4(k-1)(2k-3) = k2 - 8k2+20k-12 = -7k2+20k-12=0 Solving this equation for k: 7k2-20k+12=0 D = 100-84 = 16 k1,2=(10+-4)/7 => k = 6/7, k=2

KP
Answered by Katerina P. Maths tutor

4675 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


How do I differentiate 4x^3 + 2x + x^4 with respect to x?


Show that arctan(x)+e^x+x^3=0 has a unique solution.


How do I find the derivative of two functions multiplied by each other?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning