Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0

A quadratic equation has two equal roots when its discriminant is equal to 0. Calculating the discriminant of the given equation: D = k2 - 4(k-1)(2k-3) = k2 - 8k2+20k-12 = -7k2+20k-12=0 Solving this equation for k: 7k2-20k+12=0 D = 100-84 = 16 k1,2=(10+-4)/7 => k = 6/7, k=2

KP
Answered by Katerina P. Maths tutor

4423 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x^2 +2)(2x-6) with respect to x.


How would you derive y = function of x; for example: y = 3x^3 + x^2 + x


The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences