Prove that 1+2+...+n = n(n+1)/2 for all integers n>0. (Hint: Use induction.)

Let us procede by induction:

First case: n=1. Then LHS (left hand side) = 1 and RHS (right hand side) = 1(1+1)/2 = 1. Therefore, we see that the statement is true for n=1.

Now, we carry out the inductive step: Suppose the statement is true for n=k. Using this, we attempt to prove that the statement is also true for n=k+1.

Set n=k+1. Then RHS = (k+1)(k+2)/2 and 

LHS = 1 + 2+ ... + k + (k+1) = k(k+1)/2 + (k+1) [Here we have used our inductive assumption, now we must show that this is equal to our RHS above.]

= (k(k+1) +2k+2 )/2 =( k+k +2k +2 )/2 = ( k+3k +2 )/2 =(k+1)(k+2)/2 = RHS.

So, we have shown that if the statement holds for n=k, it must also hold for n=k+1. Since we know it is true for n=1, we conclude that it is true for n=2, 3, 4, ....

Can you think of a different way to solve this problem (without using induction)?

(Idea: 1+2+...+n = 1 + n + 2 + (n-1) + 3 + (n-2) +... = ( n+1) + (n+1) + .... What happens if n is odd/ even?)

AT
Answered by Aran T. Maths tutor

4415 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius


A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


Find the minimum and maximum points of the graph y = x^3 - 4x^2 + 4x +3 in the range 0<=x <= 5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning