How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?

We find the eigenvalues (here called "k") by solving the characteristic equation det(M - kI) = 0. For a 2x2 matrix ((a, b), (c,d)) the determinant is ad - bc, we set this equal to zero and solve the resulting quadratic (using the quadratic formula or otherwise). We can then substitute the found values of k into the eigenvalue equation Mv = kv to find the eigenvectors v by observing that (M - kI)v = 0 and solving the resulting system of equations.The use of these calculations is that they completely characterise the action of the matrix in question. From the eigenvalues and eigenvectors we can see exactly how a matrix affects other objects. This is especially useful in fields such as physics where we want to use mathematics to model the world around us.

TD
Answered by Tutor120184 D. Maths tutor

4637 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that (1-cos2x)/sin(2x) = tan(x) where x ≠ nπ/2


There's a school in India where only 60% of students have internet access. What is the probability of choosing eight students randomly, five of whom have internet access? (Info: Each student's internet access (or lack of it) is independent from all others


Prove the square root of 2 is irrational


Calculate the first derivative of f( x)= 3x^3+2x^2-5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning