Find the gradient of the curve y=2sinx/x^3 at the point x=

  1. To find the gradient of the curve we must differentiate the function. The function is in the form of a quotient, y=u/v, where u and v are functions of x. Therefore, we can use the quotient rule, dy/dx = (v (du/dx) – u (dv/dx))/ v^2. 2) We can write u = 2sinx and differentiating this we obtain du/dx = 2cosx. 3) We then take v= x^3 and differentiating this we obtain dv/dx = 3x^2 by multiplying by the power then taking one off the power (the general rule for differentiation being y=ax^n, dy/dx = anx^(n-1). 4) The quotient rule then gives, dy/dx = (v (du/dx) – u (dv/dx))/ v^2 = ( 2x^3cosx – 6x^2sinx) / x^6 = 2x^2 (xcosx – 3sinx) / x^6 = 2(xcosx – 3sinx)/x^4. 5) To find the gradient at the point Q where x=1 we substitute x=1 into dy/dx. We obtain, dy/dx = 2(cos1 – 3sin1).
HM
Answered by Holly M. Maths tutor

3644 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the curve with the equation y=x^2 +4x+4, labelling the points where it crosses or touches the axes.


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


A-level: solve 8cos^2(x)+6sin(x)-6=3 for 0<x<2(pi)


Solve the Equation: 2ln(x)−ln (7x)=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences