Express x^2+8x+15 in the form (x+a)^2-b

Completing the Square is required to solve this equation. First, identify A,B, and C of the quadratic equation: A=1, B=8, C=15. Halve B to obtain a: B/2 = 8/2 = 4 so a = 4. Substitute a into the form (x+a)2-b: (x+4)2-b. Square a because it is within the squared brackets: a2 = 42 =16. Subtract the square of a from the equation (x+4)2-b: (x+4)2-16. Add C to the equation to obtain the final answer: (x+4)2-16 +15 = (x+4)2-1. ANS=(x+4)2-1

MP
Answered by Mahfuza P. Maths tutor

31096 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A cylinder of base radius 2x and height 3x has the same volume as a cone of base radius 3x and height h. Find h in terms of x.


Solve the inequality: x^2 - x < 12


A and B are points on a circle, centre O. BC is a tangent to the circle. AOC is a straight line. Angle ABO = x°. Find the size of angle ACB, in terms of x. Give your answer in its simplest form. Give reasons for each stage of your working.


Ian earns £420 a week after a 5% rise. What was his pay before?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning