How do you prove the chain rule?

Given the problem f(x)=(y+x)^5 we use the chain rule as a tool to find the derivative. However, it is difficult to use effectively in further problems without understanding the mechanics of the function. F(x) can be broken down into two functions where h(g(x)) is a composite function equalling f(x). H(u)=u^5 and g(x)=y+x.Typically we write derivatives in prime notation, for example f'(x), but it is more useful in this case to write it in operator notation. Operator notation allows us to break the derivative down further into smaller components the differentials dy and dx and treat it as a fraction as dy/dx.F'(x)=dy/dxH'(u)=dy/duG'(x)=du/dxIf we multiply dy/dudu/dx we can apply fraction multiplication rules of the numerator multiplied by the other numerator and the denominator by the other denominator and we can rearrange them in any order. So that:dy/dudu/dx=(dydu)/(dxdu)=du/dudy/dxAs du/du=1dy/dudu*dx=dy/dxH'(u)*g'(x)=dy/dx thus we have proven the chain rule.


EC
Answered by Ella C. Maths tutor

4189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

An object of mass 2kg is placed on a smooth plane which is inclined at an angle of 30 degrees from the ground. Calculate the acceleration of the object.


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


How to differentiate 2x^5-4x^3+x^2 with respect to x


Express 9^(3x+1) in the form 3^y, giving "y" in the form "ax+b" where "a" and "b" are constants.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning