Solve the simultaneous equations 4x + 5y = 13 and 3x - 2y = 27.

Using the elimination method to remove the variable x, we need both equations to have the same values of x. To do this we find the lowest common multiple of the x values: the lowest common multiple of 3 and 4 is 12. Multiply equation (1) by 3 (so that the x value equals 12) to give 12x + 15y = 39. Multiply equation (2) by 4 to give 12x - 8y = 108. Subtract equation (2) from (1): 23y = -69. Divide both sides by 23 in order to find the value of y: y = -3. Use the value of y that we have found and substitute it back into either equation (1) or (2) in order to find the value of x. Taking equation (1), wherever there is a y replace it by the value (-3): 4x + 5(-3) = 13, and now we can solve for x. 4x - 15 = 13 -> 4x = 28 -> x = 7. Therefore, the solution to this pair of simultaneous equations is x = 7 and y = -3.

CH
Answered by Christy H. Maths tutor

8917 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of the line L1 is y = 3x – 2 . The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Billy wants to buy these tickets for a show. 4 adult tickets at £15 each 2 child tickets at £10 each A 10% booking fee is added to the ticket price. 3% is then added for paying by credit card. Work out the total charge when paying by credit card.


Solve the simultaneous equations: 4x + y = 25, x - 3y = 16


Prove that 12 cos(30°) - 2 tan(60°) can be written as √k where k is an integer, state the value of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning