A myelinated axon conducts impulses faster than a non-myelinated axon. Explain this difference:

A myelinated neurone is insulated by a layer of Schwann cells that make up the myelin sheath. This aids in the faster conduction of an action potential down the neuronal axon. Depolarisation of the axon can only occur at regions of the axon that are not myelinated (i.e. are not surrounded by Schwann cells), these regions are called the Nodes of Ranvier. Therefore, in myelinated neurones, the nerve impulse is said to jump from node - to - node, a impulse pathway known as Saltatory Conduction. This means that the action potential does not have to travel along the whole length of the myelinated axon. This translates to an increased speed in the transmission of the nerve impulse across an entire myelinated axon compared to along a non-myelinated axon.

HP
Answered by Hanna P. Biology tutor

16905 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

What is the key difference between the rough endoplasmic reticulum (RER), and smooth endoplasmic reticulum (SER)?


Measles, mumps and rubella (MMR) are dangerous diseases that can be fatal to children. The MMR vaccine is given to children at a young age to produce antibodies against these diseases. Describe how giving the vaccine leads to the production of antibodies.


What are the four bases found in DNA and how do they bond.


How does genetic variation occur in meiosis?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences