Find the exact value of dy/dx at (-2,4) of the curve C: 4x^2 -y^2 + 6xy + 2^y = 0

First notice that this is an equation that will require implicit differentiation since C cannot be explicitly written in terms of either x or y. Thus we must differentiate each term with respect to x:-the first term is easy as it is in terms of x only, so d(4x^2)/dx = 8x-the second term isn't too hard as it is terms of y only, so d(-y^2)/dx = d(-y^2)/dydy/dx [by chain rule] = -2ydy/dx-the third term is tricker as it is a product of x and y, so d(6xy)/dx = 6xd(y)/dx+6d(x)/dxy [by product rule] = 6xdy/dx + 61y = 6xdy/dx + 6y-the fourth term isn't too hard again as it is in terms of y, but you need to be familiar with standard differentiation results, so d(2^y)/dx = d(2^y)/dydy/dx = (2^y)ln2dy/dx [by standard result]So the final answer for C differentiated with respect to x is:8x - 2ydy/dx + 6xdy/dx + 6y + (2^y)ln2dy/dx = 0Substituting the value of (x,y) = (-2,4) gives:8(-2) - 2(4)dy/dx + 6(-2)dy/dx + 6(4) + (2^4)ln2dy/dx = 0-16 -8dy/dx -12dy/dx +24 +16ln2dy/dx = 08 - 20dy/dx + 16ln2dy/dx = 02 - 5dy/dx + 4ln2dy/dx = 0Now factorising and rearraging gives: dy/dx = 2/(5-4ln2)

SD
Answered by Saskia D. Maths tutor

4460 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality x^2 – 5x – 14 > 0.


Differentiate y=x^2cos(x)


Integrate (12x^5 - 8x^3 + 3)dx giving the terms of the answer in the simplest terms


The point P (4, –1) lies on the curve C with equation y = f( x ), x > 0, and f '(x) =x/2 - 6/√x + 3. Find the equation of the tangent to C at the point P , giving your answer in the form y = mx + c. Find f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning