Differentiate: y = 4x^3 - 5/x^2

To make this equation easier to differentiate it would be easier to write it using index rules as y = 4x^3 - 5x^-2 From here we can begin to differentiate: dy/dx = 3*4x^(3-1) - (-2)*5x^(-2-1) Then finally simplify the equation above to give: dy/dx = 12x^2 +10x^-3

CB
Answered by Chris B. Maths tutor

7973 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.


y = (x^2)sin(3x). Find dy/dx


Find the equation of the tangent to the curve y=x^2+5x+2 at the point where x=5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences