How to calculate the inverse of a 2x2 matrix

Suppose we have a matrix M = [{a b} {c d}]

The inverse of a matrix M is any matrix, that when multiplied by M, gives the unit matrix (I) - in this case: [{1 0} {0 1}]

First, we have to determine if the matrix can be inverted or not. A matrix can only be inverted if it is square, and if the determinant is not zero (the determinant of a matrix is analogous to a single numeric value, representing the "size" of a matrix. the inverse of 0 makes no sense, as 1/0 is undefined)

The determinant of M, det(M), is calculated as follows:

det(M) = ad-bc.

Now, to calculate the inverse of M. In general, there are many methods for calculating inverse matrices, and these methods get progressively more complicated the larger the matrix. However, for a 2x2 matrix, there exists a simple method:

inverse of M = (1/det(M))[{d -b} {-c a}]

The top left and bottom right values are swapped, and the top right and bottom left values are multiplied by -1. Then every value of the matrix is divided by the determinant of the original matrix.

It is important to note that this method only works for 2x2 matrices - trying it with any other type of matrix would yield false results, if any.

AR
Answered by Alex R. Maths tutor

11189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = sin(2x)(4x+1)^3, find dy/dx


Sketch, on a pair of axes, the curve with equation y = 6 - |3x+4| , indicating the coordinates where the curve crosses the axes, then solve the equation x = 6 - |3x+4|


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


Point P on the curve, x = 2tan( y+ π/12), has a y-coordinate of π/4. Find an equation for the normal to the curve at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning