How do you solve simultaneous equations?

To solve simultaneous equations you need to cancel out variables like x and y one at a time to solve for the other. In the edexcel GCSE 2017 paper this question came up: solve simultaneously x2+y2=25 y-3x=13
From this you can see it's easier to work with the second equation first. You can move this around to make y=3x+13, then substitute this into the first equation to get: x2+(3x+13)2=25. You should then expand this bracket out and find x2+9x2+39x+39x+169=25 and condense this to 10x2+78x+144=0. It can then be divided by 2 to get 5x2+39x+72=0
This then needs to be factorised as: (x+3)(5x+24)=0. You then must set each individual bracket equal to 0 and obtain x=-3 and x=-24/5. Now you have found these you can easily substitute them into our y=3x+13 equation and find that y=3(-3)+13 which gives y=4 and y=3(-24/5)+13 which gives y=-7/5SOLVED

LN
Answered by Libby N. Maths tutor

2974 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

P is a point on a circle with the equation x^2 + y^2 = 45. P has x-coordinate 3 and is above the x axis. Work out the equation of the tangent to the circle at point P.


Express the number 252 in terms of its prime factors


The equation of line L is y= 3x+2 and the equation of line M is 3y–9x+5=0. Show that these lines are parallel.


Can you derive the Quadratic Formula?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning