Factorise and solve: x^2 - 8x = -15

Step 1: The first step is to rewrite the equation in the form ax2 bx + c = 0. So in this case, we achieve this by adding 15 to both sides:    x2 - 8x + 15 = -15 + 15
                                          x- 8x + 15 = 0

Step 2: Now we need to factorise the equation. To factorise this equation we start with finding two numbers which add up to -8 and multiply to make 15. These numbers must be -5 and -3. So the factorisation of this equation is:                       (x - 5)(x - 3) = 0

Step 3: Finally, we can solve by saying:          
                                           x - 5 = 0 or  x - 3 = 0, so
                                           x = 5 or x = 3  

CHECK:  You can check your two answers, 5 and 3, by subsituting them into the orginal equation, x- 8x = -15.
So firstly for x = 5:              (5)2 - 8(5) =  -15
                                           25   - 40   =  -15
                                                   -15   =  -15 which is clearly true, so we have confirmed that x = 5 is a solution.
We can proceed in exactly the same way for x = 3, and if you try it you will find that it works out and we can confirm that x = 3 is a solution too. 

NEAT ANSWER: Here is an example what you should write in the exam to get full marks:
                                          x2 - 8x = -15
                                          x2 - 8x + 15 = 0
                                         (x - 5)(x - 3) = 0 
                                         So, x = 5 or x = 3

 

MJ
Answered by Maisie J. Maths tutor

7342 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: x^2 + y^2 = 29 and y - x =3


On a packet of brown rice it says 'When 60g of rice is cooked, it will weigh 145g.' If Katy has 100g of brown rice, how much will it weigh when cooked?'


How do you find the turning point of a quadratic equation?


Consider the right angled triangle with vertices labelled a, b, c. Angle A = 60°, Angle B = 90°, length ab=4cm, length ac=xcm. If cos60° = 0.5, work out the value of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning