Over a million students use our free study notes to help them with their homework
Since we are looking for a stationary this means the derivative will be equal to 0, so we will have to differentiate the equation. When we differentiate ( y = 2x + 27/x^2 ) we get ( dy/dx = 2 - 54/x^3 ). ...
This comes up in C4 in A level maths and differentiating it could come up in C3. You can write a^x as exp(ln(a^x))=exp(xln(a)) then differentiating this, you get ln(a)exp(xln(a))=ln(a)a^x. By differen...
Prove by contradiction: Assume negation to be true i.e. √2 is rational Then √2 can be written in the form a/b where a and b are integers with no common factor (the fraction cannot be simplified) => a/b...
Differentiate y to get: dy/dx = 7-3x^2 , dy/dx = 0 , therefore x=(+/-)sqrt(7/3) d^2y/dx^2 = 6x , substitute x values in to y=7x-x^3 and d^2y/dx^2 to find coordinates and the type of the stationary point.<...
(x+3)(x-7)
= (xx) + (x-7) + (x3) + (3-7)
= x^2 - 7x + 3x - 21
= x^2 - 4x - 21
Key here is to ensure you multiply each term in one bracket by both in the other...
←
1430
1431
1432
1433
1434
→
Internet Safety
Payment Security
Cyber
Essentials